

1. DISCLAIMER

READ INSTRUCTIONS - all the safety and operational instructions should be read before the product is operated

TRANSPORT – every item removed from the multipack must be properly secured (e.g. with bubble wrap) for further transport

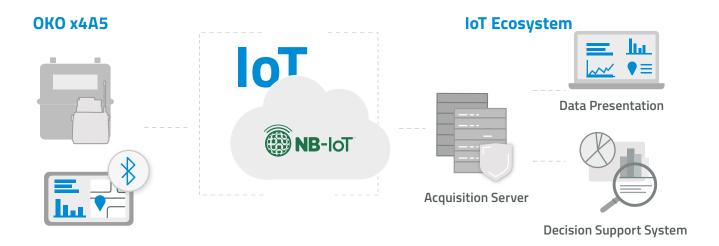
ACCESSORIES – the installation of the product should follow the manufacturer's instructions and should use mounting accessory recommended by the manufacturer

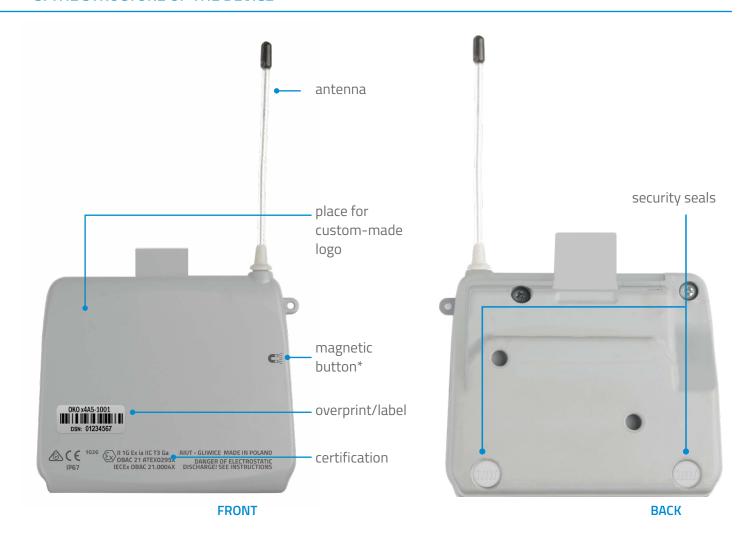
RECYCLING – the used devices should be returned to the manufacturer for proper disposal

REPLACEMENT PARTS – when replacement parts are required, make sure that only replacement parts specified by the manufacturer are used

SPECIAL USAGE CONDITIONS

- Operating temperature range: -25 °C ÷ +55 °C
- IP 67 device protected against dust penetration and immersion in water (up to 1 meter) for half an hour.
 Whenever it is necessary to open the cover, secure the device against dust and moisture.
- Never rub the enclosure surface of OKO x4A5 using a dry cloth because of the danger of electrostatic discharge.


WARRANTY – failure to follow the instruction or any modifications/alternations in the operations described in this instruction may void the warranty


VIBRATION - product is not designed to work in heavy vibration

2. GENERAL DESCRIPTION

OKO x4A5 is a battery powered ATEX / IECEx / UK Ex certified, wireless data logger that can be easily installed on existing diaphragm meters. Received data from the past few months are stored and transferred over NB-IoT network to acquisition server at regular intervals. Subsequently, the data can be processed further to 3rd party data center. Flexible configuration permits for customization of logged data structures and communication pattern for specific Gas Utility needs. Its Bluetooth 5.2 module allows data collection, on-site configuration and diagnostics with dedicated SITA application.

3. THE STRUCTURE OF THE DEVICE

OVERPRINT

ORDER NUMBER & OKO VERSIONS

Generic information
OKO x 4A5

Hardware/firmware version
1 y 0 1

x - interface for local communication

X - version with connector (Fig.2)

Y - version with magnetic field sensor (Fig.1)

y - type of antenna

0 - whip antenna (Fig.1)

1 - SMA connector for external antenna (Fig.2)

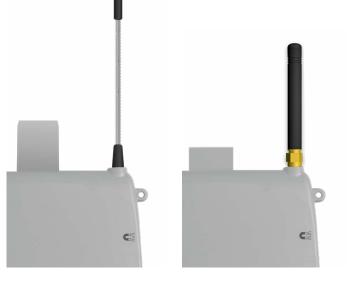


Fig.1 OKO Y4A5-1001

Fig.2 OKO X4A5-1101

4. TECHNICAL PARAMETERS

LOW POWER COMMUNICATION

LPWA module Quectel BC66

Worldwide frequency bands B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/

B25/B26*/B28/B66

Approvals GCF (Global), CE (Europe), PTCRB (North America), FCC (America), IC (Canada)

KC (South Korea), NCC (Taiwan, China), JATE/TELEC (Japan), RCM (Australia/New Zealand),

NBTC (Thailand), IMDA (Singapore)

SIM card MFF2 - eSIM

BLE module BlueNRG-2 (Bluetooth 5.2), 2,4GHz, +8dBm, range up to 30m.

ENVIRONMENTAL PARAMETERS

Operating temperature (data transfer): -25°C to +55°C

Storage temperature

(measurements stored in device archive): -40°C to +60°C

Ingress protection IP 67

Housing material Polyamide (PA6)

POWER SUPPLY

Type of battery 2 x non-replaceable, 3V, Li-MnO₂, A-size

Battery lifetime up to 10 years

MECHANICAL PARAMETERS

Dimensions H (w/o antenna) x W x D: 90mm x 91mm x 36mm

Weight 223g

INTRINSICALLY SAFE PARAMETERS

Connector of the adapter U0=5,4V; Io= 20mA; Po=25mW; Co=65uF; Lo=800uH

Ui=5,4V; Ii=0,2A; Pi=1W; Li, Ci – negligible

SMA connector Uo=10V; Io=0,2A; Po=2W; Co=1uF; Lo=1uH

REPLICATION PULSE OUTPUT

Output port located in dedicated IMR adapter and capable of providing meter pulse output connections to other meter pulse utilization devices. For more please refer to <u>Replicated Pulse Measurement</u>.

Circuits 1 intrinsically safe circuit Maximum input current I, 40mA

Connector type RJ-11/RJ-9 Maximum output current I, 1mA

Max cable length 3m Maximum internal capacitance C, Negligible Maximum output voltage U, 30V Maximum internal inductance L, Negligible Maximum output voltage U, 5,88V Maximum internal inductance L, Negligible

Maximum external inductance L₀ 1mH

Maximum output power P_o 1mW

Maximum input power P 1,1W

^{*} In development

5. OPERATION OF THE DEVICE

OKO x4A5 can operate in two modes:

- warehouse (seal-run) mode
- regular (run) mode

The modes differ in modem operation, BLE communication and battery consumption. However, in both modes you can collect data, configure the device on-site and run diagnostics with dedicated SITA application.

OKO operation in warehouse (seal-run) mode

For safe transport and in order to minimize the battery consumption during the storage (prior the installation), the device is in *Seal-run mode* directly after the production. In warehouse mode OKO x4A5 counts pulses but no mobile communication is performed*. However, in *Seal-run mode* it is possible to activate BLE communication. To do so, swipe the magnet near the magnet icon printed on the casing.

- Minimized battery consumption
- Pulse counting active
- No mobile communication
- BLE on demand

Once the BLE communication is activated, advertising frames are sent for 3 hours with the frequency of 2.5s.

*It is possible to wake up the device from *Seal-run mode* during the installation procedure performed with SITA application. For more please refer to: <u>Device Commissioning with SITA</u>

OKO operation in regular (run) mode

OKO x4A5 can enter *Regular (run) mode* with SITA application. In this mode the device operates regularly - it takes pulses from the meter and transfers the data over mobile network to acquisition server periodically (e.g. daily at specified time). The Bluetooth 5.2 module embedded in the device sends the advertising BLE frames continuously with the frequency of 2.5s.

- Pulse counting active
- Regular mobile communication
- Continuous BLE

The content of an advertising frame transmitted by OKO x4A5

In both modes it is possible to communicate with the device by BLE. Once the device is connected by BLE, a two-way communication using IMR WAN 3 protocol starts.

	Device firmware version Remaining battery power [%]
,	 maximum temporary/hourly flow is exceeded magnet tamper detection detection of device removal from gas meter BLE connection is active extreme temperature of the device is exceeded device warning device error / service required

,	gas volume registered in the last gas daytimestamp of the gas day
Volume*	Volume registered by pulse counter in pulse rate units, where the pulse rate is a parameter of the meter totalizer
Clock*	Device clock in UTC
Time left for BLE**	Minutes left until the end of BLE communication
Serial number	Device serial number

^{*} Applies only to advertising frames of OKO in regular (run) mode

^{**} Applies only to advertising frames of OKO in warehouse (seal-run) mode

6. MECHANICAL ASSEMBLY

Meter type: HONEYWELL, ELSTER, INTERGAZ BK (Z4 and Z6 index type), Landis+Gyr Model 750, Model 1010

OKO X4A5

Insert the IC E015/IC L015 adapter on the gas meter.

2 Secure the adapter with a blue seal.

Secure the whole set with a plastic meter seal.

3 Fix OKO to the adapter.

4 Screw and seal OKO with two grey IMR seals on both sides of the cover.

Install the seal by threading the wire in the following order: blue seal (1), sealing handle of the adapter (2), sealing handle of the OKO (3). Then thread the wire through the seal cylinder (4). Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and

apply lateral force to break off the

plastic wing.

Meter type: Landis+Gyr Model 750, Model 1010

OKO Y4A5

Insert the IC L013 adapter on the gas meter and secure it with a blue seal.

2 Fix OKO to the adapter.

4 Screw and seal OKO with two grey IMR seals on both sides of the cover.

Install the seal by threading the wire in the following order: blue seal (1), sealing handle of the OKO (2). Then thread the wire through the seal cylinder (3). Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and apply lateral force to break off the plastic wing.

Meter type: ELEKTROMETAL EM

OKO X4A5

Fix and screw the IC KO15 adapter to the gas meter.

2 Seal the adapter with grey IMR seal.

3 Fix OKO to the adapter.

4 Screw and seal OKO with two grey IMR seals on both sides of the cover.

5 Secure the whole set with a plastic meter seal.

Install the seal by threading the wire in the following order: sealing handle of the OKO (1), sealing handle of the adapter (2), sealing handle of the gas meter (3). Then thread the wire through the seal cylinder (4). Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and apply lateral force to break off the plastic wing.

OKO X4A5

aiut

Meter type: GL i UG by APATOR METRIX

1 Fix the IC M015 adapter on the gas meter.

2 Secure the adapter with a blue seal.

3 Fix OKO to the adapter.

4 Screw and seal OKO with two grey IMR seals on both sides of the cover.

5 Secure the whole set with a plastic meter seal.

Install the seal by threading the wire in the following order: blue seal (1), sealing handle of the adapter (2), sealing handle of the OKO (3), and again, sealing handle of the adapter (4). Then thread the wire through the seal cylinder (5). Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and apply lateral force to break off the plastic wing.

Meter type: RF1 by ITRON

OKO X4A5

Thread the wire through the two holes located below the meter **2** counter.

Fix the IC R015 adapter on the gas meter.

3 Screw and seal the adapter with the grey IMR seal.

Fix OKO to the adapter. Then, screw and seal OKO with two grey IMR seals on both sides of the cover.

5 Secure the whole set with a plastic meter seal.

Install the seal by threading the wire in the following order: two holes below the meter counter (1) as described in step no.1, sealing handle of the OKO (2), sealing handle of the adapter (3). Then thread the wire through the seal cylinder (4). Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and apply lateral force to break off the plastic wing.

Gas meters embedded with pulse output

OKO X4A5

1 Connect the wires to the IC U015 adapter as indicated on its casing and on the cable.

2 Fix OKO to the adapter and screw on both sides of the cover.

3 Seal the OKO with two grey IMR seals on both sides of the cover.

4 Secure the whole set with a plastic meter seal.

Install the seal by threading the wire in the following order: sealing handle of the adapter, sealing handle of the OKO. Then thread the wire through the seal cylinder. Tighten the seal by rotating the plastic wing clockwise. Firmly hold plastic body in one hand and apply lateral force to break off the plastic wing.

ASSEMBLY METHODS

Wall mounting with screws.

Wall mounting with double sided tape.

Pipe mounting with dedicated handles and plastic ties.

7. DEVICE COMMISSIONING WITH SITA

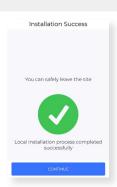
Together with the mechanical installation of OKO x4A5, an action activating the device from seal-run mode and registering it in particular location must be performed*. The operation can be performed with SITA - an application dedicated for mobile devices (smartphone, tablet) with android OS that supports the operational procedures such as installation/uninstallation and configuration of IoT devices, as well as diagnostics, operations and services.

*concerns devices supported by IMR IoT Ecosystem platform or if the functionality is implemented in the client's HeadEnd System.

The procedure of device commissioning with SITA application is performed in a few easy steps:

1 Select the device, its location and meter.

2 Introduce gas meter data (main parameters and gas volume from its mechanical counter).



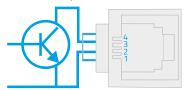
3 Connect to the device by BLE and send the data to the server.

For more about device installation with SITA please refer to <u>SITA User Guide.</u>

8. REPLICATED PULSE MEASUREMENT

Thanks to the replicated pulse output, OKO x4A5 can be connected to 3rd party data acquisition system. The output is located in a dedicated IMR adapter and can provide meter pulse output connections to other meter pulse utilization devices, without interfering or disrupting the collection of data and having minimal effect on any power source within the AMR device.

Prepare the cable and crimp the RJ11 connector to the cable using crimping tool. The wires should be inserted into the connector according to the diagram below.



Plug the connector into the socket in the adapter as shown in the picture.

- 1 Short-circuited with wire no. 4*
- 2 Ground
- 3 Impulse output
- 4 Short-circuited with wire no.1*

*Pins internally connected in the socket

Daily readouts packet

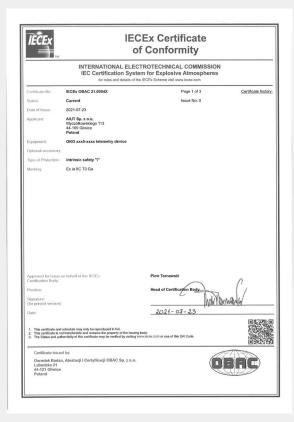
9. SCOPE OF DATA

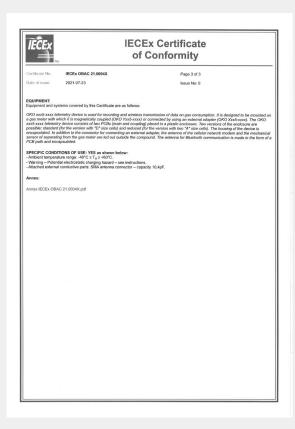
The content of data packet sent by OKO x4A5 depends on configuration, while the frequency of data transfer is set in schedules. The exemplary information contained in the data packet sent by OKO is listed below.

 Gas 	meter	pul	lse	rate
-------------------------	-------	-----	-----	------

- End timestamp of the gas day
- Total volume registered in the end of the gas day
- Current meter index
- Maximum instantaneous flow on the gas day
- Timestamp of the maximum instantaneous flow during the gas day
- Maximum hourly flow during the gas day
- Timestamp of the hourly flow during the gas day
- Frequency of meter index registration [e.g. one hour]
- Meter index differences for the subsequent registration periods [e.g. one hour]
- Ambient temperature [°C]
- Battery level [%]
- Mobile signal strength [0-31]
- Current date and time [UTC]
- Status of the accelerometer
- Firmware version

Magnet tamper detection


- Device removal from the meter
- Exceeded maximum allowed hourly flow
- Exceeded maximum allowed instantaneous flow
- Exceeded maximum allowed temperature
- Active BLE connection
- Active magnet button
- Device warning
- significant change in device clock
- change in volume counter
- device installation/uninstallation
- discontinuity of meter index registration


- Device error
- SIM card error
- modem error
- low battery level
- low voltage detected
- real time clock error
- memory integrity error

10. CERTIFICATIONS

IECEx

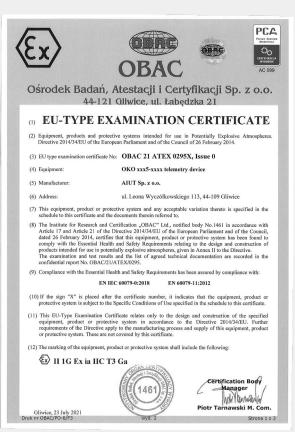
OBAC Ośrodek Badań, Atestacji i Certyfikacji Sp. z o.o. ul. ŁABĘDZKA 21, 44-121 Gliwice

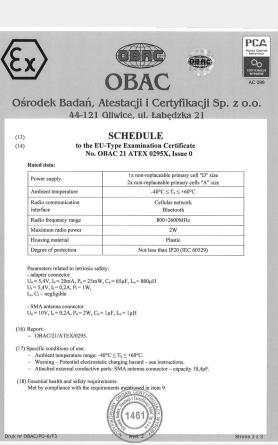
Annex to IECEx OBAC 21.0004X Issue 0

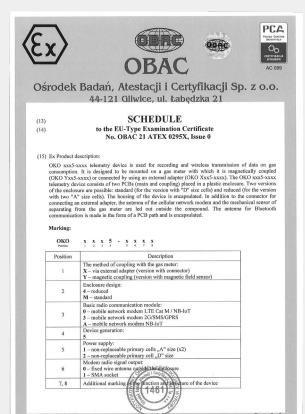
Power supply	1x non-replaceable primary cell "D" size 2x non-replaceable primary cells "A" size
Ambient temperature	-40°C ≤ T ₈ ≤ +60°C
Radio communication interface	Cellular network Bluetooth
Radio frequency range	800+2600MHz
Maximum radio power	2W
Housing material	Plastic
Degree of protection	Not less than IP20 (IEC 60529)

Parameters related to intrinsic safety - adapter connector $U_o=5.4V,\ I_o=20mA,\ P_o=25mW,\ C_o=65\mu F,\ L_o=800\mu H$ $U_i=5.4V,\ I_o=0.2A,\ P_i=1W,\ L_i,\ C_i-nogligible$

 \cdot SMA antenna connector U_o = 10V, I_o = 0,2A, P_o = 2W, C_o = 1 μF , L_o = 1 μH


OKO x x x 5 - x x x x Position 1 2 3 4 5 6 7 8


osition	Description
1	The method of coupling with the gas meter: X – via external adapter (version with connector) Y – magnetic coupling (version with magnetic field sensor)
2	Enclosure design: 4 - reduced M - standard
3	Basic radio communication module: 0 – mobile network modem LTE Cat M / NB-IoT 3 – mobile network modem 2G/SMS/GPRS A – mobile network modem NB-IoT
4	Device generation: 5
5	Power supply: 1 – non-replaceable primary cells "A" size (x2) 2 – non-replaceable primary cell "D* size
6	Modem radio signal output: 0 – fixed wire antenna outside the enclosure 1 – SMA socket
7.8	Additional marking of the function and structure of the device


Page 1 / 1

ATEX

7, 8

UK Ex

- UK TYPE EXAMINATION CERTIFICATE
- Product Intended for use in Potentially Explosive Atmospheres UKSI 2016:1107 (as amended by UKSI 2019:696) Schedule 3A, Part 1

Certificate Number: ExVeritas 23UKEX1529X

Product: OKO xxx5-xxxx Telemetry device

Manufacturer:

AIUT Sp. z o.o.

ul. Wyczókowskiego 113, 44-109 Gliwice, Poland Address:

- This product and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.
- EXVeritas Limited Approved Body number 2565, in accordance with Regulation 42 of the Equipment and Protective Systems Intended for Use in Potentially Explosive Aumospheres Regulations 2016, UKSI 2016 1107 (as amended by UKSI 2016/66), centifies that the product has been found to comply with the Essential health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Schedule 1 of the Regulations.

EN IEC 60079-0: 2018 EN IEC 60079-11:2012

Except in respect of those requirements listed at section 16 of the schedule to this certificate.

- If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate.
- The marking of the equipment shall include the following:

FO.CB.76 V2 Page 1 of 3

Schedule

13 <u>Description of Product</u>

OKO xxxxx telemetry device is used for recording and wireless transmission of data on gas consumption. It is designed to be mourted on a gas meter with which it is magnetically occupied (OKD Yxx5xxxxx) and considered by using an external sadapter (OKD Xxx5xxxxxx). The OKD XXXX5xxxxx is an accordance of the considered view of the considered of the City City can and coupling) placed in a plastic enclosure. Two versions of the enclosure are possible, standard (or the version with 10° size cells) and reduced (or the version with the X* size that the collabor relevoir modern and the mechanical serior of expensating from the gas meter are led out outside the compound. The antenna for Bluetooth communication is made in the form of a PCB path and encapsulated.

Power supply	1x non-replaceable primary cell "D" size 2x non-replaceable primary "A" size
Ambient temperature	-40°C to +60°C
Radio communication interface	Cellular network Bluetooth
Radio frequency range	800 to 2600 MHz
Maximum radio power	2W
Housing material	Plastic
Degree of protection	Not less than IP20 (IEC 60529)

Adapter connector limiting parameters: Uo = 5.4 V, Io = 20 mA, Po = 25 mW, Co = 65 µF, Lo = 800 µH Ui = 5.4 V, Ii = 0.2 A, Pi = 1W, Ci, Li - negligible

SMA Antenna connector limiting parameters: Uo = 10 V, Io = 0.2 A, Po = 2 W, Co = 1 μ F, Lo = 1 μ H

Part number disambiguation:

UKU	×	×	×	5		×	×	X	×	
Position	1	2	3	4	-	5	6	7	8	
December	_	_	_	_	_	_	_	_	_	

Position	Description
1	The method of coupling with the gas meter: X – via external adapter (version wth connector) Y – magnetic coupling (version with magnetic field sensor)
2	Enclosure design 4 – reduced M – standard
3	Basic radio communication module: 0 - mobile network modem LTE Cat M / NM-IoT 3 - mobile network modem 2G/SMS/GPRS A - mobile network modem NB-IoT
4	Device generation: 5
5	Power supply 1 – non-replaceable primary cells "A" size (x2) 2 – non-replacable primary cell "D" size
6	Modem radio signal output: 0 – fixed wire antenna outside the enclosure 1 – SMA socket
7 & 8	Additional marking of the function and structure of the device.

This certificate may only be reproduced in its entirety and without any change, schedule included.
For help or assistance relating to this certificate, contact into <u>Reventias com</u>.
ExVeritas, Units 16-18, Aberbury Way, Wirecham Industrial Estate, Wresham, United Kingdom LL13 9UZ.
EXVeritas® is a registered trademark, unauthorised use will lead to prosecution.

Page 2 of 3

 Report Number
 Cert Issue Date
 Issue
 Comment

 R3536/A/4
 25/01/2023
 0
 Initial issue of the Prime Certificate

4.2 Compliance Drawings:			
Title	Document	Revision	Date
Ex documentation OKO xxx5-xxxx	DOC01	3.0	08/11/2022
User manual – minimum content	DOC02	2.0	08/11/2022
Ex documentation OKO xxx5-xxxx	DOC01	1.0	30/05/2021
User manual – minimum content	DOC02	1.0	30/05/2021
Oshanatian	DDWM	1.0	20/05/2004

Printed boards
Components lists
Ex documentation OKO xxx5-xxxx
Components lists 15 Conditions of certification

15.1 Special Conditions for Safe Use

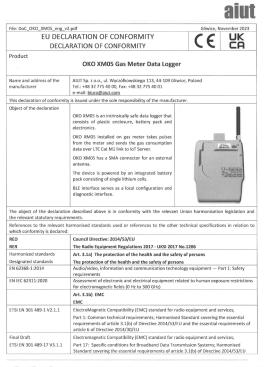
Ambient temperature range: -40°C to +60°C
 Warning – Potential electrostatic charging hazard – see instructions.
 Attached external conductive parts; SMA antenna connector capacitance = 10.4pF

15.2 Routine tests

None

16 Essential Health and Safety Requirements (Regulations Schedule 1)

Essential Health and Safety Requirements are addressed by the standards listed in section 9 and where required the report listed in section 14.1 The manufacturer shall inform ExVeritas of any modifications to the design of the product described by this schedule.


This certificate may only be reproduced in its entirety and without any change, schedule included.

For help or assistance relating to this certificate, contact independent comparts compared to the certificate, contact independent compared to the certificate, contact independent compared to the certificate, unlate of the contact independent contact in certificate certificate

FO-CB-76 V2

CE/UKCA

AUUT Sp. 200. 41. Wysoffundings 111 to 4 19 275 at 20 18 to 4 275 276 200 to 4 19 275 200 to 4

aiut

has performed	the manufacturer's quality system assessment procedure according to Part 2 and Part 5 of Schedule 3A of the Regulations
and issued the UK Quality Assurance Notification:	ExVeritas 23UKQAN0330
Product is certified under IEC	Ex Scheme Rules, IECEx 02 and Operational Documents as amended.
IECEx Certificate No.	IECEX OBAC 21.0004X
RoHS 2.0 and RoHS 3.0 RoHS 2012	Council Directive: 2011/65/EU and Commission Delegated Directive (EU) 2015/863 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 - UKSI 2012 No. 3032
Harmonized standards Designated standards	
EN IEC 63000:2018	Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances
Products are developed and a Signed for and on behalf of m	manufactured in an ISO 9001:2015, PN-N-18001, EN ISO/IEC 80079-34:2011 certified factory nanufacturer: Prepared by:
// tel. 32 775 400	R Sp. rea. Nycothorologog 115 Nycothorologog 115 Nycothorologog 115 Nycothorologog 115 Grzegor Stolc Certification Engineer

ALUT Sp. z o.o. 4 L. Wysoliwosing 11 to 40,079 7,401000100 and the story of the sto

aiut

Draft	Electromagnetic Compatibility (EMC) standard for radio equipment and services;
ETSI EN 301 489-52 V1.1.0	Part 52: Specific conditions for Cellular Communication Mobile and portable (UE) radio and ancillary equipment; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU
	Art 3.2 Efficient use and support for efficient use of radio spectrum
	Efficient use and support for efficient use of radio spectrum
ETSI EN 301 908-1 V13.1.1	IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 1: Introduction and common requirements
ETSI EN 301 908-13 V13.1.1	IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 13: Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE)
ETSI EN 300 328 V2.2.2	Wideband transmission systems; Data transmission equipment operating in the 2,4 GH: band; Harmonised Standard for access to radio spectrum

ATEX	Council Directive: 2014/34/EU					
Harmonized standards						
EN IEC 60079-0:2018	Explosive atmospheres Part 0: Equipment - General requirements					
EN 60079-11:2012	Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"					
The notified body (ATEX)	OSRODEK BADAN, ATESTACJI I CERTYFIKACJI OBAC SP. Z.O.O., Poland					
body identification number	1461					
has performed	conformity assessment procedure according to Module B: EU-Type Examination					
and issued the Certificate:	OBAC 21. ATEX 0295X					
The notified body (ATEX)	Physical Technical Testing Institute Ostrava-Radvanice, Czech Republic					
body identification number	1026					
has performed	the manufacturer's quality system assessment procedure according to Module D: Conformity to type based on quality assurance of the production process					
and issued the Quality Assurance Notification:	FTZU 04 ATEX Q 008					
Product is certified under IECE	ix Scheme Rules, IECEx 02 and Operational Documents as amended.					
IECEx Certificate No.	IECEX OBAC 21.0004X					
UKEX	The Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016 - UKSI 2016 No.1107 (as amended by UKSI 2019 No.696					
Designated standards						
EN IEC 60079-0:2018	Explosive atmospheres Part 0: Equipment - General requirements					
EN 60079-11:2012	Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"					
The UKCA approved body	Ex Veritas Limited, United Kingdom					
body identification number	2585					
has performed	conformity assessment procedure according to Part 1 of Schedule 3A – Type Examination					
and issued the Certificate:	ExVeritas 23UKEX1529X					
	Ex Veritas Limited, United Kingdom					
The UKCA approved body	Ex Veritas Limited, United Kingdom					

AULT Sp. 20.0.

\$41. MysoRhendage 111
\$43. Will clean, Made
\$45. Will clean, Will clean
\$45. W

J.S. Hamilton Poland Sp. z o.o. Jednostka Certyfikująca ul. Wyzwolenia 14 41-103 Siemianowice Śląskie

CERTIFICATE

OF ENCLOSURE PROTECTION DEGREE No. JSHP/36/IP/2021

- (2) Manufacturer: AIUT Sp. z o.o.
- (3) Address: 44-109 Gliwice, ul. Leona Wyczółkowskiego 113, Poland
- (4) Device: OKO x4x5-1xxx Gas meter data logger
- (5) Tested degree of enclosure protection: IP67
- (6) J.S. Hamilton Poland Sp. z o.o. Certification Body based in Siemianowice Śląskie on the basis of tests carried out according to standard PN-EN 60529:2003, certifies that the enclosure of the device listed in paragraph (4) ensures a degree of protection listed in paragraph (5).
- (7) The certificate was issued on the basis of a test report prepared by J.S. Hamilton Poland Sp. z o.o. Testing Laboratory based in Siemianowice Śląskie (Accreditation No. AB 1552) No. LT/397.1/2021 and applies only to items that have been covered by this test report.
- (8) Date of the certificate issue: 13.10.2021

M HAMILTON Siemianowice St., 13th October 2021

J.S. Hamilton Poland Sp. z o.o., ul. Chwaszczyfaka 180, 81-571 Gdynia
Jednostka Certyffkugeca, ul. Wyzwolenia 14, 41-103 Sieminowice Stakile
TeJ-Fax. +48 2.73 08 20, www.hamilton.com

