APULSE X3x5 Instrukcja Użytkowania

APULSE X3x5 Instrukcja Użytkowania PL v.20180921 e-mail: service@aiut.com Tel: (+48) 660 756 094

aiut

1. WARUNKI UŻYTKOWANIA

- Temperatura pracy: -40°C do +55°C
- IP 65
- Nigdy nie wycieraj powierzchni obudowy APULSE X3x5 używając suchych materiałów. Grozi to niebezpieczeństwem rozładowania elektrostatycznego
- Akcesoria produkt należy instalować i użytkować zgodnie z instrukcjami producenta oraz przy użyciu narzędzi zalecanych przez producenta.
- Gwarancja postępowanie niezgodne z instrukcjami zawartymi w tym dokumencie może skutkować utratą gwarancji.
- Transport każdy element opakowania zbiorczego, po rozpakowaniu do dalszego transportu, musi być prawidłowo zabezpieczony (np.

folią bąbelkową)

Nie istnieją żadne inne przeciwwskazania dotyczące instalacji i eksploatacji urządzenia. W warunkach obiektowych, zgodnie z certyfikacją ATEX, wykonywany może być montaż urządzenia na działającym gazomierzu czy otwieranie/zamykanie obudowy.

2. CERTYFIKATY

II1G Ex ia IIB T3 Ga

Produkt zgodny jest z zasadniczymi elementami deklaracji CE:

- ATEX (dyrektywa 2014/34/UE)
- RED (dyrektywa 2014/53/UE)
- EMC (dyrektywa 2014/30/UE

3. ZASADA DZIAŁANIA

APULSE X3x5 to uniwersalny rejestrator danych, łatwy w montażu na istniejących gazomierzach miechowych dzięki dedykowanym adapterom. Urządzenie to rejestruje godzinowy profil konsumpcji gazu, a także próby sabotażu czy użycia magnesu. Raz dziennie wysyła dane za pośrednictwem sieci LPWAN (Sigfox lub LoRa). APULSE X3x5 zaprojektowany jest do odczytu obchodzonego, jak i klastrowego, co czyni go najbardziej ekonomicznym rozwiązaniem dla gęstej zabudowy miejskiej czy bloków mieszkalnych (np. taryfa W1- W3).

IMR Smart Gas Metering zaprojektowany i wyprodukowany przez AIUT, składa się z rozwiązań komunikacyjnych, rejestratorów danych, a także pakietów oprogramowania do pozyskiwania danych, ich analizy i prezentacji.

4. TRYBY KOMUNIKACJI

Profil IoT

APULSE X3 okresowo, np. raz dziennie, przesyła dane do chmury operatora IoT, skąd mogą one być przekierowane do Serwera IMR. W zależności od ograniczeń danego typu komunikacji IoT, APULSE przesyła jedynie podstawową informacje o bieżącym zużyciu oraz status urządzenia lub pomiary godzinowe wzbogacone danymi diagnostycznymi. Ograniczenia te mogą również dotyczyć preferowanego, jednokierunkowego trybu komunikacji.

System Obchodzony

W trybie obchodzonym APULSE X3 przesyła rejestrowane dane drogą radiową do ARANGE 6070, który realizuje dwukierunkową komunikację z rejestratorem. ARANGE 6070 komunikuje się poprzez Bluetooth z urządzeniem (notebook, tablet) osoby przeprowadzającej odczyty. Pozyskane w ten sposób dane przekazywane są przez dedykowaną aplikację do systemu telemetrycznego IMR.

System Stacjonarny

W trybie stacjonarnym APULSE X3 przesyła rejestrowane dane drogą radiową do przypisanego koncentratora OKO 5xx5. Następnie, otrzymane dane przekazywane są poprzez SMS/GPRS do systemu telemetrycznego IMR. Domyślnie każdego dnia użytkownik otrzymuje pakiet danych zawierający przede wszystkim aktualny status urządzenia, dzienne statystyki i archiwa, a dodatkowo, pod koniec dnia i miesiąca, APULSE X3 generuje raporty podsumowujące z godzinowym i dziennym profilem zużycia.

5. STRUKTURA URZĄDZENIA

Maks. długość kabla

Maks. pojemność wewn. Ci

Maks. indukcyjność wewn. Li Pomijalna

Maks. napięcie Ui

Maks. prad li

Maks. moc Pi

3 m

30 V

37 mA

1.1 W

Pomijalna

*KOMUNIKACJA IoT

LoRa - Specyfikacja LoRa WAN: 1.0.2, Urządzenie klasy A, Moc (uplink): +14 dBm, Częstotliwość: 867-869 MHz, 915-928 MHz Sigfox - Zaprojektowany dla RCZ1, Urządzenie klasy Ou (uplink only), Uplink Power: +14 dBm, Częstotliwość: 868-868.6 MHz. IMR- Radio IMR oparte na zmodyfikowanym protokole WMBus, modulacja FSK, SRD 860 band.

aiut

7. MONTAŻ MECHANICZNY

Proces montażu wykonywany jest na wiele sposobów i różni się w zależności od użytego gazomierza (oraz adaptera). Ogólny proces montażu opisuje schemat poniżej:

Umieść adapter na gazomierzu i zabezpiecz go plastikową plombą

Zamocuj APULSE na adapterze i zabezpiecz go plombami IMR

8. AKTYWACJA URZĄDZENIA

Aby zapewnić bezpieczny transport oraz zminimalizować zużycie energii przed instalacją, urządzenie po produkcji znajduje się w trybie uśpienia poprodukcyjnego (seal-run). Zlicza ono impulsy, natomiast nie realizuje zdalnej łączności.

Urządzenie w trybie uśpienia poprodukcyjnego. Naciśnij długo przycisk/przyłóż magnes do guzika na 5 s.

 Krótko naciśnij przycisk/krótko przyłóż magnes do guzika.

Urządzenie jest w trybie działania.

9. REPLIKATOR IMPULSÓW

Urządzenie APULSE X3x5 może być podłączone do innych urządzeń systemu akwizycji danych. Umożliwia to replikator impulsów zlokalizowany w dedykowanym adapterze IMR.

- Przygotuj przewód połączeniowy i zarób jedną jego końcówkę wtyczką złącza RJ11 używając przeznaczonych do tego narzędzi. Poszczególne przewody powinny być osadzone we wtyczce zgodnie z rysunkiem poniżej
 - 1 Zwarte z przewoden nr 4*
 - 2 Masa
 - 3 Wyjście impulsowe
 - 4 Zwarte z przewodem nr 1*

*Piny zwarte po stronie gniazda w rejestratorze Podłącz przewód z wtyczką do gniazda R11 w adapterze jak pokazano na przykładowym zdjęciu poniżej

10. AKTYWACJA KOMUNIKACJI

Po wybudzeniu urządzenia APULSE X3 z trybu Seal-Run, jest się ono w trybie działania i wysyła ramki radiowe (LoRa, Sigfox, walk-by, ramka stacjonarna – zależnie od konfiguracji) z określoną częstotliwością. Dodatkowo istnieje możliwość wysłania ramki na żądanie.

Krótko naciskaj przycisk/przykładaj magnes do urządzenia do momentu pojawienia się 3 ekranu Menu Głównego.

W 3 ekranie naciśnij przycisk/przyłóż magnes na 3 sekundy.

Dolna strzałka zaczyna mrugać - APULSE X3 wysyła ramkę radiową. Po wysłaniu ramki ikona strzałki gaśnie.

🔁 🔻 🚽

APULSE X3x5 Instrukcja Użytkowania PL v.20180921 e-mail: service@aiut.com Tel: (+48) 660 756 094

mb

11. INSTALACJA OBIEKTOWA

Po mechanicznym montażu APULSE X3 w wybranej lokalizacji, urządzenie powinno zostać zarejestrowane w systemie. Ta operacja przeprowadzana jest przy użyciu aplikacji SITA. SITA to aplikacja przeznaczona dla urządzeń mobilnych z systemem operacyjnym Android wspierająca procedury obiektowe takie jak instalacja i konfiguracja różnych modeli rejestratorów gazomierzowych, operacje diagnostyczne i serwisowe. Dane i informacje zgromadzone podczas prac obiektowych (odczyty archiwum, montaże/ demontaże, wymiana baterii, itp.) trafiają z aplikacji mobilnej prosto do serwera telemetrycznego IMR gdzie są dalej przetwarzane i prezentowane.

METODY INSTALACJI

z APULSE X3

KROKI INSTALACII

1	W aplikacji SITA wypełnij formularz instalacyjny
2	Akcja SMS jest wysłana na Serwer. Potwierdź poprawność danych w formu-
	larzu poprzez wysłanie ich do serwera IMR. Tym samym serwer rozpocznie
	automatyczną akcję konfiguracji APULSE X3 wg. podanych parametrów.

Akcja zakończona. Zakończenie akcji konfiguracyjnej sukcesem lub błędem jest rejestrowane na serwerze.

Użytkownik uzyskuje odpowiedź z Serwera, która wyświetlona zostaje w aplikacji SITA.

APULSE X3x5 Instrukcja Użytkowania PL v.20180921 e-mail: service@aiut.com Tel: (+48) 660 756 094

12. STRUKTURY DANYCH

HARMONOGRAMY

Jedną z najważniejszych funkcjonalności APULSE 3 jest uniwersalny mechanizm harmonogramowania zadań. W każdym harmonogramie możliwe jest skonfigurowanie dowolnego polecenia, które będzie wykonywane w określonym czasie i zdefiniowaną częstotliwością (np. jednorazowo bądź periodycznie). Istnieje możliwość jednoczesnego wykonfigurowania do 12 harmonogramów. Konfiguracja harmonogramów zgodnie z wytycznymi klienta przeprowadzana jest na etapie produkcji i konfiguracji urządzenia.

KOMUNIKACJA NA ŻĄDANIE

Istnieje możliwość ręcznego wysłania ramki radiowej z urządzenia. Aby to zrobić, w trzecim ekranie Menu Głównego długo naciśnij przycisk/przyłóż magnes na co najmniej 3 sekundy. Szczegóły w rozdziale: <u>Aktywacja Komunikacji.</u>

Dodatkowo APULSE X3 wyposażony jest w opto port umożliwiający lokalną komunikację z urządzeniem. Wystarczy przyłożyć głowicę opto do urządzenia i otworzyć dedykowaną aplikację do odczytu / zapisu konfigurowalnych parametrów APULSE X3.

Wysyłanie ramki radiowej na żądanie

APULSE z przyłożoną Głowicą Opto 02x3

ZGŁOSZENIA

W przypadku spełnienia określonego warunku (np. przyłożenie zewnętrznego pola magnetycznego, przekroczona dozwolona temperatura) istnieje możliwość uruchomienia natychmiastowej komunikacji z serwerem. Takie zgłoszenia mogą zostać zinterpretowane jako alarm oraz odpowiednio przetworzone w celu poinformowania SMS-em bądź mailem odpowiedzialny personel. Dodatkowo, informacja o wystąpieniu zdarzenia wraz ze statusem urządzenia przesyłana jest cyklicznie zgodnie z ustalonym harmonogramem.

13. ZAKRES DANYCH - ramki radiowe

Informacje zawarte w przesyłanych ramkach radiowych z APULSE 3X zależne są od trybu komunikacji w jakim pracuje urządzenie (obchodzonym stacjonarny, LoRa, Sigfox) oraz od wprowadzonej konfiguracji. Poniżej przedstawiono przykładowe ramki generowane przez APULSE:

Typ danych	Stacjonarny	Obchodzony	LoRa	Sigfox
Wersja firmware	\checkmark	\checkmark		
Waga impulsu	\checkmark		\checkmark	\checkmark
Maksymalna wartość liczydła	\checkmark			
Wartość kaloryczna gazu	\checkmark	\checkmark		
Stan urządzenia	\checkmark			
Zatrzaśnięty stan urządzenia	\checkmark	\checkmark	\checkmark	\checkmark
Wysłane ramki radiowe	\checkmark	\checkmark		
Odebrane ramki radiowe	\checkmark	\checkmark		
Min./max/średnia temperatura				
Min./max/średnia temperatura z miesiąca		\checkmark		
Średnia temperatura				\checkmark
Status baterii	\checkmark		\checkmark	\checkmark
Liczydło objętości	\checkmark		\checkmark	\checkmark
Liczydło energii	\checkmark			
Maksymalny zatrzaśnięty przepływ godzinowy	\checkmark			
Maksymalny zatrzaśnięty przepływ chwilowy	\checkmark			
Odczyty różnicowe - wartość objętości uzyskana w kolejnych okresach rejestracji:				
- 24 odczyty godzinowe z poprzedniej doby gazowniczej			\checkmark	
- 31 odczytów dziennych z poprzedniego miesiąca		\checkmark		
Dane archiwalne z okresu do 3 miesięcy		\checkmark		

14. DOSTĘP DO DANYCH & KONFIGURACJA

Dane uzyskane z APULSE X3 przesyłane są do serwera akwizycyjnego IMR - wysokowydajnego, wieloprotokołowego systemu gromadzenia danych, który umożliwia prezentację danych w aplikacjach internetowych, nadzór nad procedurą instalacyjną, obsługę urządzeń i utrzymanie systemu.

SGM Konsola Zarządzająca – jest rozbudowanym narzędziem umożliwiającym użytkownikowi kontrolę nad zużyciem gazu, wykonywanie usług płatniczych oraz zarządzanie lokalizacjami i samymi urządzeniami. Aplikacja umożliwia wykonywanie wszelkiego rodzaju działań krok po kroku w stosunkowo krótkim czasie.

SITA – to aplikacja przeznaczona dla urządzeń mobilnych z systemem operacyjnym Android wspierająca procedury obiektowe takie jak instalacja i konfiguracja różnych modeli rejestratorów IMR lub urządzeń stowarzyszonych (np. przeliczników objętości). Dane i informacje zebrane podczas wykonywania procedur przesyłane są bezpośrednio do Serwera IMR gdzie są następnie przetwarzane i prezentowane w dedykowanych aplikacjach.

SIMAX – Web Portal służący do wizualizacji danych z pomiarów archiwizowanych w bazie serwera IMR. Aplikacja ta umożliwia pracę w kontekście wybranego dystrybutora i daje użytkownikowi dostęp do mechanizmów zarządzania takich jak: tworzenie nowych lokalizacji, modyfikowanie lokalizacji czy dodawanie licznika

IMR Device Configurator – to aplikacja służąca do komunikacji z urządzeniami telemetrycznymi, umożliwiająca ich konfigurację, testowanie i diagnostykę. Aplikacja pozwala na zapis i odczyt danych oraz przeprowadzenie szeregu operacji na urządzeniu

ULSE	•	Load driver	Auto load driver	r 🗹 Reload Protocol: ImrWa	n2 • Serial Number: 46000001 Tr	yGetSN
RS232 SMS GPRS	Check connection on start		Leading zeros Vakening Unidatai	Advanced grouping		
	Port: COM1	···· · Baud	Rate: 9600 arity: None	Timeout [s]: 3 ↔ BytesInterval[ms]: 200 ↔	Use exclusively Start	
	Keep alive Wakeup modem before send Enabled Period (g): 120 • • DEVICE_ORDER_JUMBER • Enabled DEVICE_ORDER_JUMBER •					
. [Deservators	F	Diverse			
inke	Parameters	Firmware	Plugins			Course law to Sta

15. LOKALNY DOSTĘP DO DANYCH

APULSE X3 wyposażony jest w Opto Port, który umożliwia:

- Aktualizację oprogramowania
- Dostęp do konfiguracji, danych, archi wum, etc.
- Przełączanie trybów urządzenia praca/ seal-run
- Operacje na urządzeniu
- Instalację w lokalizacji

Dodatkowo, APULSE X3 może komunikować się w wybranym paśmie radiowym z ARANGE 6070, który połączony jest poprzez Bluetooth z urządzeniem mobilnym, na którym zainstalowana jest dedykowana aplikacja do odczytów/instalacji.

Moduł Opto

UWAGA Głowica Opto 02x3 (z Bluetooth 4.1 BLE) aktywuje się do komunikacji samoczynnie po wybraniu jej z listy dostępnych urządzeń Bluetooth w aplikacji. Po zamknięciu aplikacji głowica opto przejdzie w stan oczekiwania na komunikację

APULSE X3x5 z przyłożoną Głowicą Opto 01x1 (z połączeniem USB))

APULSE X3x5 z przyłożoną Głowicą Opto 02x3 (z Bluetooth BLE 4.1)

Naciśnij krótko przycisk/ przyłóż głowicę opto do opto portu w urządzeniu na 3 s w dowolnej pozycji menu.

Przyłóż opto głowicę do portu opto w urządzeniu i podłącz ją do portu USB w Twoim komputerze (dotyczy Głowicy Opto 01x1).

Otwórz dedykowaną aplikację przeznaczoną do lokalnej komunikacji i konfiguracji (SITA, IMR Device Configurator) i odczytaj/zapisz konfigurowalne parametry przypisane do urządzenia.

Niebieska dioda - komunikacja Bluetooth

Łagodne pulsowanie (t=4s) - oczekuje na komunikację Ciągłe światło niebieskie - połączenie aktywne Mruganie (t=0,5s) - transmisja danych

UWAGA W przypadku przeprowadzenia komunikacji z APULSE X3 w obszarach zagrożonych wybuchem, możliwe jest stosowanie jedynie odpowiednio certyfikowanych urządzeń (Głowica Opto 02x3, komputer). W przeciwnym razie odczyty/konfiguracja muszą zostać przeprowadzone poza strefą zagrożenia.

Możliwe Stany Modułu Opto

16. DEMONTAŻ

Proces demontażu różni się w zależności od użytego gazomierza (oraz adaptera). Ogólny proces demontażu opisuje schemat poniżej:

17. WYMIANA BATERII

UWAGA Po wymianie baterii w urządzeniu należy ustawić status baterii na 100%. Można to zrobić przy użyciu aplikacji SITA.

ARANGE 6070

Urządzenie nadawczo-odbiorcze przeznaczone do realizowania dwukierunkowej komunikacji radiowej z urządzeniami telemetrycznymi zainstalowanymi w lokalizacjach.

Podczas przeprowadzania odczytu w ramach Systemu Obchodzonego, ARANGE 6070 otrzymuje drogą radiową dane z urządzeń telemetrycznych (np. APULSE, OLAN) . ARANGE 6070 komunikuje się po Bluetooth i przekazuje zebrane dane do urządzenia mobilnego z zainstalowaną aplikacją SITA. Następnie otrzymane dane przekazywane są bezpośrednio on-line do serwera akwizycyjnego.

GŁOWICA OPTO 02x3

Niezawodne, przyjazne użytkownikowi narzędzie pozwalające na bezprzewodową komunikację w standardzie Bluetooth BLE (Bluetooth Low Energy) z urządzeniami telemetrycznymi wyposażonymi w interfejs optyczny.

Głowica Opto współpracuje z każdym komputerem bądź urządzeniem z systemem operacyjnym Android, na którym zainstalowana jest dedykowana aplikacja do odczytu i konfiguracji danych.

Jest to uniwersalne, proste w obsłudze i bezpieczne narzędzie, które w żaden sposób nie modyfikuje przesyłanych danych ani nie wpływa na pracę urządzenia, z którym się komunikuje.

GŁOWICA OPTO 01x1

Niezawodne i przyjazne użytkownikowi narzędzie umożliwiające poprawną komunikację lokalną z urządzeniami systemu telemetrycznego IMR wyposażonymi w interfejs optyczny.

Głowica współpracuje z dowolnym komputerem, na którym zainstalowane jest dedykowane oprogramowanie umożliwiające konfigurację urządzenia i odczyt danych (IMR Device Configurator).

To uniwersalne i łatwe w użyciu narzędzie umożliwia komunikację z urządzeniami poprzez złącze USB. Głowica w żaden sposób nie modyfikuje przesyłanych danych ani nie wpływa na pracę urządzenia z którym się komunikuje.

Narzędzie dedykowane urządzeniom IMR ułatwiające precyzyjne przyłożenie Głowicy Opto do portu opto w urządzeniu.

NARZĘDZIA

- Śrubokręt PH rozmiar 1
- Wkręt z łbem walcowym, typ PH1, rozmiar: d x L: 3,1mm x 10mm

APULSE X3x5 Instrukcja Użytkowania PL v.20180921 e-mail: service@aiut.com Tel: (+48) 660 756 094

12

ADAPTERY

UWAGA Więcej informacji na temat adapterów i ich typów znajdziesz w dokumencie Adaptery X3- Seria IC.

PRZEWODNIK PO IKONACH

OSTRZEŻENIE

- przyłożenie zewn. pola magnetycznego
- zdjęcie urządzenia
- przekroczona max/min. temperatura
- przekroczony maks. przepływ

UŚPIENIE

urządzenie w trybie uśpienia (radio wyłączone)

KOMUNIKACJA

 prawidłowo odebrano pakiet: miga 30 s potem świeci, przy następnej aktywacji wył.

 wychodzący pakiet: miga 30 s potem świeci (jeśli OK), przy następnej aktywacji wył.

BŁĄD

- błąd RTC
- błąd licznika impulsów
- błąd modułu radiowego

aiut

CERTYFIKAT ATEX

